Community-acquired Pneumonia and the Case for Antimicrobial Stewardship

Sophie Katz, MD, MPH August 27, 2022

Disclosures

• None

Objectives

- Highlight trends in antibiotic use for childhood pneumonia
- Review data on pneumonia etiology
- Highlight opportunities for reducing antibiotic use in the pediatric population

Outline

- 1. Background / Epidemiology
- 2. Trends in antibiotic use
 - Special circumstances macrolides, cefdinir and aspiration pneumonia
- 3. Antibiotic duration
- 4. Diagnostic stewardship
 - Blood cultures, nasal MRSA PCR

Background

- Community-acquired pneumonia (CAP) accounts for approx. 2 million outpatient visits annually¹
- 1 in 500 children with CAP require hospitalization²
- Nearly impossible to distinguish viral vs. bacterial CAP in the clinical setting
 - Drives antibiotic prescribing for CAP

- 1. Kronman et al. *Pediatrics*, 2011
- 2. McCulloh RJ, Patel K. Curr Infect Dis Rep, 2016.

Definition of CAP

- Acute lower respiratory tract infection acquired in a previously healthy individual
- Associated symptoms: fever, cough, dyspnea, and tachypnea

https://www.faythclinic.com/obesity-in-children-treatment-mumbai-2-2-2/

 Supporting evidence of parenchymal infection and inflammation, diagnosed on physical exam or as a focal opacity on chest x-ray

Pathogen Detected*

* Respiratory syncytial virus (RSV), human rhinovirus (HRV), human metapneumovirus (HMPV), adenovirus (AdV), influenza A/B (Flu), M.pneumoniae (M.pn.), parainfluenza viruses 1-3 (PIV), coronaviruses (CoV), S. pneumoniae (S. pn.) *87 detections in 80 children: S. aureus (21), viridans streptococci (18), S. pyogenes (16), C. pneumoniae (12), H. influenzae (9), other Gram-negative bacteria (9), Histoplasma (2)

Jain S et al. NEJM, 2015

•

•

lacksquare

Epidemiology of CAP, 2015-2018

- 380 inpatient
- 61 outpatient) ٠
- Pathogen ID'd in 65% .

Antibiotic Treatment

IDSA Guidelines

IDSA GUIDELINES

The Management of Community-Acquired Pneumonia in Infants and Children Older Than 3 Months of Age: Clinical Practice Guidelines by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America

• Published in 2011 (new version is in process)

IDSA Guidelines - *Outpatients*

- Antibiotics are NOT routinely required for preschool-aged children
 - Viruses = most common cause of pneumonia
 - Strong recommendation; high-quality evidence
- <u>Amoxicillin</u> is first-line therapy for previously healthy, immunized infants, preschool children and school-aged children
 - Target = *S. pneumoniae*
 - Strong recommendation, moderate-quality evidence

IDSA Guidelines - *Inpatients*

- <u>Ampicillin or penicillin</u> G is first-line therapy for previously healthy, immunized infants, preschool children and school-aged children
 - Target = *S. pneumoniae*
 - Strong recommendation, moderate-quality evidence
- <u>Ceftriaxone</u> is first-line therapy for children who are not fully immunized, or for children with life-threatening infection, including empyema
 - Weak recommendation, moderate-quality evidence
- <u>Vancomycin or Clindamycin</u> should be added if characteristics are consistent with *S. aureus*
 - Strong recommendation, low-quality evidence

Antibiotics – Inpatient Guideline Adoption

- Hospital billing databases (PHIS vs Premier Perspectives)
- 2009-2015
- 120,238 children

Guideline concordance in 2015:

- Non-children's hospital: 27%
- Children's hospital: 61%
- Improvement in guidelineconcordant prescribing across the board (but still room to do better)

Antibiotics – Outpatient Guideline Adoption

- Retrospective cohort study, pediatric primary care, 2009-2013
- 10,414 children: 41% amoxicillin rx, 43% macrolide rx, 17% broad-spectrum rx

Handy LK, et al. Pediatrics, 2017

Antibiotics – Outpatient Guideline Adoption

- 2008-2015 retrospective surveys; outpatient clinics & EDs
- 601 children ages 1-6 years (represents estimated 6.3 million visits for CAP)

Narrow-Spectrum Antibiotics

Florin TA, et al. JPIDS, 2020

Study Year

- ↑ in narrow- spectrum rx
 - in broadspectrum and macrolide rx
- Most pronounced for 1-4 years

Antibiotics - Outpatient

- 1488 (0.69%) hospitalized in the 2-7 days after their clinic visit
- 117 (0.05%) developed severe pneumonia
- 13,623 (5.4%) had change in antibiotic therapy

Antibiotic groups	Hospitalization	Severe pneumonia	Change in antibiotic therapy
Narrow-spectrum	Referent	Referent	Referent
Narrow-spectrum + macrolide	0.62	0.39	0.47
Broad-spectrum	1.34	1.2	1.15
Broad-spectrum + macrolide	1.43	1.56	0.48
Macrolide only	0.64	0.56	0.97

Color = statistically significant

Macrolides

Macrolides

- Children with signs and symptoms suspicious for *Mycoplasma pneumoniae* should be tested to help guide antibiotic selection
 - Weak recommendation; moderate-quality of evidence
- *Inpatients*: Empiric combo therapy with a macrolide should be prescribed in children for whom *M. pneumonaie* and *C. pneumoniae* are significant considerations
 - Weak recommendation; moderate-quality evidence
- <u>Outpatients</u>: Macrolide antibiotics should be prescribed for treatment of children (school-aged and adolescents) with findings compatible with CAP caused by atypical pathogens.
 - Weak recommendation; moderate-quality evidence

Antibiogram Data

Vanderbilt Children's Hospital Antibiogram

	Ν	Amoxicillin-clavulanate	Cefepime (meningitis)	Cefepime (non-meningitis)	Cefotaxime (meningitis)	Cefotaxime (non-meningitis)	Ceftriaxone (meningitis)	Ceftriaxone (non-meningitis)	Clindamycin	Erythromycin ¹	Levofloxacin	Meropenem	Moxifloxacin	Penicillin (meningitis)	Penicillin (non-meningitis)
Streptococcus pneumoniae	68	95	71	89	94	98	95	98	86	48	98	73	100	56	94
Design and the second states of a state second															

¹Predicts activity of azithromycin

Trends in Macrolide Prescriptions

- Hospitalized children (PHIS), 2012-2018
- 103,977 children

↓ in macrolide
 prescribing (40.9% to
 20.6%)

Outcomes with Macrolide Prescribing

- EPIC study data
- Compared beta-lactam + macrolide to beta-lactam only

Results:

- 1019 (72%) beta-lactam monotx
 vs. 399 (28%) beta-lactam +
 macrolide
- No difference in length of stay (55 vs. 59 hours)
- No difference in ICU admission, rehospitalization or self-reported recovery at follow-up

Cumulative Incidence of Discharge According to Antibiotic Treatment

Williams DJ, et al. JAMA Peds, 2017

Cefdinir

Cefdinir

IDSA GUIDELINES

The Management of Community-Acquired Pneumonia in Infants and Children Older Than 3 Months of Age: Clinical Practice Guidelines by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America

> No oral cephalosporin at doses studied in children provides activity at the site of infection that equals high-dose amoxicillin. Most second- or third-generation oral cephalosporins provide adequate activity against only 60%–70% of currently isolated strains of pneumococcus. Clindamycin provides in vitro activity

Cefdinir

- Pharmacokinetics
 - Poorly absorbed
 - Highly protein bound (only unbound drug is active!)
 - Limited accumulation in tissues [tissues] ≤ [serum]
 - Metabolized quickly (short half-lives)
- Pharmacodynamics
 - Target: Time/MIC
 - Outpatient: 30-40% of the day
 - Inpatients: 60-80% of the day
 - Immunocompromised: ≥90% of the day

https://labmedicineblog.com/2016/10/20/minimal-inhibitoryconcentrations-and-antimicrobial-dosing-how-are-they-related/

Amoxicillin for S. pneumoniae

<u>PK Quick Stats – Amoxicillin</u> Absorption = 89% Protein Binding = 20% Half-life (hours) = 1.2-2

Sensitive <u>S. pneumoniae</u> Isolate (MIC of 2 mcg/mL)

Parker S et al. *Peds in Rev*, 2013 Slides courtesy of Amanda Hurst, Pharm D

Amoxicillin for S. pneumoniae

<u>PK Quick Stats – Amoxicillin</u> Absorption = 89% Protein Binding = 20% Half-life (hours) = 1.2-2

Intermediate <u>S. pneumoniae</u> Isolate (MIC of 4 mcg/mL)

Slides courtesy of Amanda Hurst, Pharm D

Cefdinir for S. pneumoniae

<u>PK Quick Stats – Cefdinir</u> Absorption = 16-25% Protein Binding = 73% Half-life (hours) = 1.4-1.8

Sensitive <u>S. pneumoniae</u> Isolate (MIC of 0.5 mcg/mL)

Parker S et al. *Peds in Rev*, 2013 Slides courtesy of Amanda Hurst, Pharm D

Cefdinir for S. pneumoniae

<u>PK Quick Stats – Cefdinir</u> Absorption = 16-25% Protein Binding = 73% Half-life (hours) = 1.4-1.8

Intermediate <u>S. pneumoniae</u> Isolate (MIC of 1 mcg/mL)

Parker S et al. *Peds in Rev*, 2013 Slides courtesy of Amanda Hurst, Pharm D

Take Home Points – Cefdinir

- The PK/PD profile of cefdinir is why amoxicillin / amox-clav are preferred agents for treating respiratory tract infections
 - If concern for resistance / lack of improvement on first-line agents, would recommend ceftriaxone or cefixime

Aspiration Pneumonia

Aspiration Pneumonia

- Often self-resolving pneumonitis
- Etiology: *S. pneumoniae* + oral anaerobes

https://www.medicalnewstoday.com/articles/322091#what-is-aspiration-pneumonia

Aspiration Pneumonia – Anaerobic Coverage

- Single-center RCT, comparing IV PCN G to IV clindamycin
- 42 children (ages 6 mo to 18 years)
- No difference in:
 - Time to hospital discharge (4.9 vs 3.4 days, p=0.66)
 - Total hospitalization (8.5 vs 6.7 days, *p*=0.37)
 - Re-admissions within 2-weeks (6 vs. 6, p=0.99)

Antibiotics: Aspiration Pneumonia (Neurologic Impairment)

Thomson J et al. J Hosp Med, 2019

Antibiotic Duration

CAP-IT RCT

• Multicenter, RCT in the UK and Ireland, Feb 2017-April 2019

• Randomized to:

- Dose
 - Lower dose amox (35-50mg/kg/day; n=410)
 - Higher dose amox (70-90mg/kg/day; n=404)
- Duration
 - Shorter duration (3 days; n=413)
 - Longer duration (7 days; n=401)
- **Primary Outcome**: Antibiotic retreatment within 28 days

Antibiotic Dose and Duration – CAP-IT RCT

A Comparisons for all groups

No difference in outcomes!

SAFER RCT

- Non-inferiority, randomized controlled trial
- Outpatient children ages 6 months to 10 years with CAP
- 5-days vs. 10-days of high-dose amox
- **Primary Outcome**: Clinical cure at 14-21 days
- Clinical cure observed in:
 - 101/114 (88.6%) intervention group
 - 99/109 (90.8%) control group

Conclusion:

5 days is just as good as 10 days for uncomplicated outpatient CAP

SCOUT-CAP RCT

- Non-inferiority, randomized controlled trial
- Outpatient children ages 6 months to 71 months with CAP demonstrating early clinical improvement
- Interventions:
 - 5-days vs. 10-days of high-dose amox (randomized on day 3-6)
 - Outcome: composite of clinical response, resolution of symptoms and antibiotic-associated adverse effects
 - Throat swabs to quantify antibiotic resistance genes in oropharyngeal flora in a subset of patients

SCOUT-CAP RCT Outcomes

> Non-inferior:

- Clinical Response
- Persistent
 Symptoms
- Antibioticassociated adverse effects
- Composite outcome:
 - 69% probability of a more desirable outcome

Co	Short course	Standard course	Risk difference
Source	(N = 189) N (%)	(N = 191) N (%)	(95% CI)
Inadequate clinical response			
Апу	2(1)	1 (<1)	0.5 (-2.4 to 3.7)
ED or clinic visit	2(1)	1 (<1)	0.5 (-2.4 to 3.7)
Hospitalization	0	0	NA
Surgical procedure	0	0	NA
Receipt of nonstudy antibiotic	2(1)	1 (<1)	0.5 (-2.4 to 3.7)
Persistent symptoms			
Any	13 (7)	15 (8)	-1.0 (-6.8 to 4.9)
Fever	2(1)	1 (<1)	0.5 (-2.4 to 3.7)
Elevated respiratory rate	3 (2)	7 (4)	2.1 (-6.3 to 1.9)
Cough	7 (4)	6(3)	0.6 (-3.8 to 5.1)
Antibiotic-associated adverse effects			
Апу	75 (40)	70 (37)	3.0 (-7.0 to 13.0)
Irritability	53 (28)	45 (24)	4.5 (-4.7 to 3.6)
Vomiting	11 (6)	11 (6)	0.1 (-5.3 to 5.4)
Diarrhea	23 (12)	21 (11)	1.2 (-5.7 to 8.1)
Allergic reaction	15 (8)	15 (8)	0.1 (-5.9 to 6.1)
Stomatitis	1 (<1)	3 (2)	-1.0 (-4.4 to 2.0)
Candidiasis	4(2)	4(2)	0.0 (-3.8 to 3.9)
Severity of antibiotic adverse effects			
Mild	66 (35)	65 (34)	0.9 (-9.0 to 10.7)
Moderate	19 (10)	19 (10)	0.1 (-6.4 to 6.7)
Severe	1 (<1)	2(1)	-0.5 (-3.6 to 2.4)

-12

SCOUT-CAP RCT Resistome Profiles

 Significantly lower levels of resistant bacteria in short-course group **Resistome Profiles by Treatment Strategy**

Williams DJ et al. JAMA Peds, 2022

Diagnostic Stewardship

Blood Cultures

IDSA GUIDELINES

<u>Outpatient</u>

- Blood cultures should not be routinely performed in nontoxic, fully immunized children
 - Strong recommendation; moderate-quality evidence
- Blood cultures should be obtained in children who fail to demonstrate clinical improvement after starting antibiotics
 - Strong recommendation; moderate-quality evidence

<u>Inpatient</u>

- Blood cultures should be obtained in children requiring hospitalization for presumed bacterial CAP that is moderate to severe, particularly those with complicated pneumonia
 - Strong recommendation, low-quality evidence

Blood Cultures - Inpatient

- Cross-sectional study of children hospitalized with CAP in 6 children's hospitals, 2007-2011
- 7509 children in study (excluded children with complex chronic conditions and those in ICU)
- **Objective**: Determine the prevalence of bacteremia and characterize the microbiology and penicillin-susceptibility patterns of positive blood culture results

Blood Cultures - Inpatient

Overall Yield of Blood Cultures

	N	% of Cohort (N=7509)	% of All Blood Cultures Performed (n=2568)
Cohort	7509		
Blood culture performed	2568	34.2	
Pathogen	65	0.87	2.53
Penicillin- nonsusceptible organism	11	0.15	0.43

Percentage of Patients with Bacteremia Because of a Pathogen

> Low rates of bacteremia and high rates of penicillin-susceptible organisms

Blood cultures may not be needed for most children hospitalized with CAP

Nasal MRSA PCR

- ADULT pneumonia guidelines: Recommend nasal PCR to determine need for MRSA antibiotic coverage¹
- 435 adult patients with confirmed pneumonia + nasal swab MRSA PCR test + culture specimen obtained²

	Positive for MRSA on Culture	Negative for MRSA on Culture	Total Swabs
Positive MRSA PCR	22	40	62 (14%)
Negative MRSA PCR	3	370	373 (86%)
Total Cultures	25 (6%)	410 (94%)	435

Sensitivity	88%
Specificity	90%
Positive Predictive Value	35%
Negative Predictive Value	99.2%

High negative predictive value

- 1. Metlay JP et al. Am J of Resp and Crit Care Med, 2019
- 2. Dangerfield B et al. Antimicrob Agents and Chemo, 2014

Take Home Points

- 1. Guideline-concordant antibiotic prescribing for CAP has improved since the IDSA guidelines were published in 2011, but there is room for improvement
- 2. The most common etiology of pneumonia in all ages is viral
- 3. A 5-day course of antibiotics is safe for children with uncomplicated CAP (and may be superior to longer courses)
- 4. Blood cultures are not needed in children with uncomplicated CAP
- 5. Nasal MRSA PCR can help to de-escalate antibiotic therapy in hospitalized children with CAP

Thank you!

sophie.e.katz@vumc.org